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High-valent oxoiron(lV) porphyrins have been frequently invoked
as the key oxidants in the catalytic cycle of heme-containing en-
zymes! Especially, oxoiron(IV) porphyrinz-cation radicals, re-
ferred to as compound |, are believed to carry out oxygen atom
transfer reactions in the catalytic oxidation of organic substrates
by cytochromes P450 and iron porphyrin modeladeed, it has
been demonstrated that in situ-generated oxoiron(lV) porphyrin

sr-cation radicals oxygenate olefins and alkanes to the corresponding

epoxides and alcohols efficiently and stereoselecti¥&tycontrast,
oxoiron(lV) porphyrins, referred to as compound Il, have been

considered to be such poor oxidants that they can only oxygenate

triphenylphosphine to triphenylphosphine oxide until Groves and
co-workers reported that an oxoiron(lV) porphyrin complex, (TMP)-
FeV=0 (TMP = tetramesitylporphinato dianion), is able to oxidize
olefins#®However, the (TMP)PE=0 complex reacts with olefins
with a selectivity which is very different from that observed for
(TMP)*FeV=0, an oxoiron(IV) porphyrinz-cation radical com-
plex> Moreover, there is no report yet that oxoiron(IV) porphyrins
are able to activate €H bonds of alkanes, thereby yielding alcohol
products. In this Communication, we report that an oxoiron(1V)
porphyrin complex bearing electron-deficient porphyrin ligand oxy-
genates olefins and alkanes with reactivities similar to those found
in oxoiron(lV) porphyrinsz-cation radicals. To the best of our know-
ledge, this study provides the first example of an oxoiron(IV)
porphyrin complex that conducts two-electron oxidations of olefins
to epoxides and of alkanes to alcohols with a high stereoselectivity.
Treatment of an iron(lll) porphyrin complex, Fe(TPFPP)CI
(TPFPP= mesetetrakis(pentafluorophenyl)porphinato dianidn)
with m-chloroperbenzoic acid/¢ CPBA) in the presence of a small
amount of HO in a solvent mixture of CECN and CHCI, at 25
°C resulted in the formation of an oxoiron(lV) porphyrin complex,
(TPFPP)F&=0 2 (Supporting Information, Figure S1 for UY
vis spectra ofl and 2).6 Titration experiments show that the
complete conversion ofl to 2 required 4 equiv ofm-CPBA
(Supporting Information, Figure S2 for UWis spectral changes
upon the addition of different amounts ofCPBA). In addition,
the stability of2 was found to depend significantly on the amounts
of H,O present in reaction solutions (Supporting Information, Figure
S3)7 Therefore,2 was prepared by reacting with 4 equiv of
m-CPBA in the presence of 4@ and directly used in reactivity

Table 1. Epoxidation of Olefins and Hydroxylation of Alkanes by
a,b

substrate products yields (%)°  Kops X 1035719

A. Epoxidation of Olefins

cyclooctene cyclooctene oxide 435 3.5+0.3
cyclohexene cyclohexene oxide 34 12+ 2
cis-stilbene cis-stilbene oxide 1% 3 2.1+0.2
transstilbene trans-stilbene oxide 214 6.9+ 0.5
B. Hydroxylation of Alkanes
triphenylmethane  triphenylmethanol 394 6.4+ 0.5
adamantane 1-adamantanol B3 1.8+0.2
2-adamantanol F1
2-adamantanone t1
cis-1,2-dimethyl-  (1R2Ror 1S529)-1,2- 29+ 4 1.6+0.2

cyclohexane dimethylcyclohexanol

aReactions were run at least in triplicate under arddn.general2 (2
mM) was prepared by adding 4 equiv oFCPBA (8 mM, in 20uL of
CH3CN) to a reaction solution containirig(2 mM) and HO (15uL) in a
solvent mixture (0.5 mL) of CECN and CHCI; (3:1) in a 0.1-cm UV cell
at 25°C. Substrate (0.2 M, in 20L of CH,Cl,) was then injected into the
UV cell, and spectral changes Bfwere directly monitored by a U¥vis
spectrophotometer. Product analyses were performed with GC/GC-MS or
HPLC, and product yields were determined by comparison against standard
curves prepared with authentic sample¥ields were calculated on the
basis of the amount & 9 Pseudo-first-order rate constants for the reduction
of 2 to [Fe"(TPFPP)T upon the addition of 100 equiv of substrate were
determined by monitoring the absorbance change at 547 nm.

responding epoxide products. In the case of cyclohexene, cyclo-
hexene oxide was yielded as a major product, and the formation of
allylic oxidation products such as cyclohexenol and cyclohexenone
was not observed. In the epoxidation @§ andtransstilbenes,

cis- andtransstilbene oxides were yielded, respectively, and the
formation of isomerized epoxide products and benzaldehyde was
not detected, indicating that the epoxidation of olefingly highly
stereospecific. Table 1 also shows that the reaction ra2soefard
olefins were in the order of cyclohexene transstilbene >
cyclooctene> cis-stilbene?

Isotope labeling studies were then performed wit}t¥8 and
180,, to understand the nature of oxidizing species and the origin
of oxygen atoms in epoxide products (see Supporting Information
for experimental details). When the cyclooctene epoxidation was
carried out with2 in the presence of $#0, we found that~30%
of the oxygen in cyclooctene oxide derived from the labeled water
(Scheme 1A) and the degree 8D incorporated into the epoxide

studies. When olefins were added to a reaction solution containing Product increased linearly with the increase of the amounts60H

2, the intermediat@ reverted back to an iron(Ill) porphyrin complex
with clear isosbestic points at 476, 524, and 566 nm (Supporting
Information, Figure S43.Product analysis of the reaction mixture

revealed that epoxides were yielded as major products (Table 1A),

demonstrating tha is capable of oxygenating olefins to the cor-
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in the reaction mixture (Supporting Information, Figure S&jur-
thermore, a significant increase 0-incorporation was also ob-
served wher2 was incubated in reaction solution containing3®
prior to the addition of cyclooctene (Supporting Information, Figure
S7). The cyclooctene epoxidation Bywas then carried out under
180, atmosphere, to ensure that @oes not play a significant role
in the olefin epoxidation. In this reaction, only a trace amount of
180 was incorporated frorfO; into the epoxide product (Scheme

10.1021/ja0368204 CCC: $25.00 © 2003 American Chemical Society
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Scheme 1. Isotope Labeling Studies
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oxoiron(lV) porphyrins with greater oxidative reactivities and to
elucidate mechanisms of oxygen atom transfer from the oxoiron-
(IV) porphyrin complex to olefins and alkanes are currently
underway in this laboratory.
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